countable paracompactness - Definition. Was ist countable paracompactness
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist countable paracompactness - definition

TOPOLOGICAL SPACE IN WHICH EVERY OPEN COVER HAS AN OPEN REFINEMENT THAT IS LOCALLY FINITE
Paracompact; Paracompactness; Fully normal space; Fully T4 space; Fully normal Hausdorff space; Paracompact Hausdorff space; Paracompact topological space; Paracompactness criteria; Countably paracompact; Hereditarily paracompact space; Countably paracompact space; Subordinate partition of unity; Paracompact manifold; Countable paracompactness

Paracompact space         
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by .
Countable (company)         
SATHVIK
Countable.us; Countable (app); Countable Corporation
Countable Corporation (aka Countable) is a Software-as-a-Service (SaaS) company based in San Francisco. The company was founded in 2013 by its CEO Bart Myers.
Hereditarily countable set         
Pure countable set; Hereditarily countable
In set theory, a set is called hereditarily countable if it is a countable set of hereditarily countable sets. This inductive definition is well-founded and can be expressed in the language of first-order set theory.

Wikipedia

Paracompact space

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact.

The notion of paracompact space is also studied in pointless topology, where it is more well-behaved. For example, the product of any number of paracompact locales is a paracompact locale, but the product of two paracompact spaces may not be paracompact. Compare this to Tychonoff's theorem, which states that the product of any collection of compact topological spaces is compact. However, the product of a paracompact space and a compact space is always paracompact.

Every metric space is paracompact. A topological space is metrizable if and only if it is a paracompact and locally metrizable Hausdorff space.